This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

4 W AUDIO POWER AMPLIFIER WITH D.C. VOLUME CONTROL

The TDA1013 is a monolithic integrated audio amplifier circuit with d.c. volume control in a 9-lead single in-line (SIL) plastic package. The wide supply voltage range makes this circuit very suitable for applications in mains-fed apparatus such as: television receivers and record players.

The d.c. volume control stage has a good control characteristic with a range of more than 80 dB; control can be obtained by means of a variable d.c. voltage between 4 and 8 V.

The audio amplifier has a well defined open loop gain and a fixed integrated closed loop gain. This offers an optimum in number of external components, performance and stability.

The SIL package (SOT-110A) offers a simple and low-cost heatsink connection.

QUICK REFERENCE DATA

Supply voltage range	Vp	15	5 to 35 V	1
Repetitive peak output current	IORM	max.	1,5 A	Α.
Total sensitivity (d.c. control at max. gain) for Po = 2,5 W	v _i	typ.	55 m	nV
Audio amplifier				
Output power at $d_{tot} = 10 \%$ $V_P = 18 V$; $R_L = 8 \Omega$	Po	typ.	4,5 W	N
Total harmonic distortion at P _O = 2,5 W; R _L = 8 Ω	d _{tot}	typ.	0,5 %	6
Sensitivity for P _O = 2,5 W	Vi	typ.	125 m	nV
D.C. volume control unit				
Gain control range	0	>	80 d	dΒ
Signal handling at d _{tot} < 1% (d.c. control at 0 dB)	Vi	>	1,2 V	V
Sensitivity for Vo = 125 mV at max. voltage gain	Vi	typ.	55 m	mV
Input impedance (pin 9)	Zi	typ.	200 k	kΩ

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110A).

Fig. 1 Block diagram and external components.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	Vp	max.	35	٧
Non-repetitive peak output current	IOSM	max.	3	A
Repetitive peak output current	IORM	max.	1,5	A
Storage temperature	T _{stg}	-55 to +	150	oc
Crystal temperature	Ti	-25 to +	150	oc
Total power dissipation	see derating of	curve Fig. 2		

HEATSINK DESIGN

Assume $V_P = 18 \text{ V}$; $R_L = 8 \Omega$; $T_{amb} = 60 \, ^{\circ}\text{C}$ (max.); $T_j = 150 \, ^{\circ}\text{C}$ (max.); for a 4 W application into an 8 Ω load, the maximum dissipation is about 2,5 W.

The thermal resistance from junction to ambient can be expressed as:

$$R_{th \ j-a} = R_{th \ j-tab} + R_{th \ tab-h} + R_{th \ h-a} = \frac{T_{j \ max} - T_{amb \ max}}{P_{max}} = \frac{150 - 60}{2.5} = 36 \ \text{K/W}.$$
 Since $R_{th \ j-tab} = 12 \ \text{K/W}$ and $R_{th \ tab-h} = 1 \ \text{K/W}$, $R_{th \ h-a} = 36 - (12 + 1) = 23 \ \text{K/W}.$

Fig. 2 Power derating curve.
—— infinite heatsink;
——— without heatsink.

CHARACTERISTICS

Vp = 18 V; $R_L = 8 \Omega$; f = 1 kHz; $T_{amb} = 25 \, ^{o}C$; unless otherwise specified

Supply voltage	Vp	typ.	18 V 5 to 35 V
Total quiescent current	I _{tot}	typ.	35 mA
Ripple rejection at f = 100 Hz; R _S = 0	RR	>	40 dB
Signal-to-noise ratio (d.c. control at minimum gain) see also note	S/N	>	60 dB
Total sensitivity (d.c. control at maximum gain) for Po = 2,5 W	v _i	typ.	55 mV
Audio amplifier			
Repetitive peak output current	IORM	<	1,5 A
Output power at d _{tot} = 10%	Po	> typ.	4 W 4,5 W
Total harmonic distortion at Po = 2,5 W	d _{tot}	typ.	0,5 %
Voltage gain	G _v	typ.	30 dB
Sensitivity for Po = 2,5 W	Vi	typ.	125 mV
Input impedance (pin 5)	$ z_i $	typ. 100	200 kΩ to 500 kΩ
Frequency response	f	>	15 kHz

Fig. 3 Gain control curve; V; at pin 8.